386.03 MB | 00:05:09 | mp4 | 1280X720 | 16:9
Genre:eLearning |Language:English
Files Included :
01 introduction-a-conversation-with-andrew-ng (37.84 MB)
01 a-few-words-from-laurence (4.83 MB)
02 features-and-components-of-mobile-ai (2.74 MB)
03 architecture-and-performance (5.86 MB)
06 optimization-techniques (3.87 MB)
01 saving-converting-and-optimizing-a-model (6.49 MB)
02 examples (3.09 MB)
03 quantization (5.1 MB)
04 tf-select (4.93 MB)
06 paths-in-optimization (3.71 MB)
01 running-the-models (4.71 MB)
02 transfer-learning (10.15 MB)
03 converting-a-model-to-tflite (4.72 MB)
04 transfer-learning-with-tflite (15.55 MB)
01 introduction-a-conversation-with-andrew (3 MB)
02 installation-and-resources (4.17 MB)
04 architecture-of-a-model (1.3 MB)
05 initializing-the-interpreter (3.49 MB)
06 preparing-the-input (2.21 MB)
07 inference-and-results (2.88 MB)
01 code-walkthrough (7.29 MB)
02 run-the-app (6.76 MB)
01 classifying-camera-images (2.65 MB)
02 initialize-and-prepare-input (6.22 MB)
01 demo-of-camera-image-classifier (13.35 MB)
01 initialize-model-and-prepare-inputs (5.01 MB)
02 inference-and-results (5.04 MB)
01 demo-of-the-object-detection-app (4.68 MB)
02 code-for-the-inference-and-results (7.13 MB)
01 introduction-a-conversation-with-andrew-ng (6.41 MB)
02 a-few-words-from-laurence (6.04 MB)
03 what-is-swift (3.72 MB)
04 tensorflowliteswift (1.96 MB)
06 cats-vs-dogs-app (2.56 MB)
07 taking-the-initial-steps (4.15 MB)
09 scaling-the-image (2.92 MB)
11 more-steps-in-the-process (4.87 MB)
01 looking-at-the-app-in-xcode (13.45 MB)
02 what-have-we-done-so-far-and-how-do-we-continue (3.72 MB)
03 using-the-app (2.73 MB)
04 app-architecture (3.36 MB)
05 model-details (1.4 MB)
07 initial-steps (5.91 MB)
09 final-steps (2.87 MB)
01 looking-at-the-code-for-the-image-classification-app (13.62 MB)
02 object-classification-intro (2.57 MB)
03 tfl-detect-app (6.42 MB)
04 app-architecture (1.16 MB)
06 initial-steps (1.27 MB)
07 final-steps (6.03 MB)
08 looking-at-the-code-for-the-object-detection-model (10.66 MB)
01 introduction-a-conversation-with-andrew-ng (17.13 MB)
02 a-few-words-from-laurence (6.09 MB)
03 devices (5.42 MB)
01 starting-to-work-on-a-raspberry-pi (3.23 MB)
02 how-do-we-start (4.52 MB)
04 image-classification (1.67 MB)
06 the-4-step-process (3.11 MB)
07 object-detection (4.16 MB)
09 back-to-the-4-step-process (7.09 MB)
01 raspberry-pi-demo (7.96 MB)
01 microcontrollers (7.77 MB)
04 closing-words-by-laurence (2.74 MB)
02 a-conversation-with-andrew-ng (8.37 MB)]
Screenshot
Rapidgator links are free direct download only for my subscriber, other hosts are free download for free users
Fikper
Code:
https://fikper.com/KsPm08OamT/Coursera.-.Device-based.Models.with.TensorFlow.Lite.rar.html
Code:
https://fileaxa.com/h3zc6zjywm4r/Coursera.-.Device-based.Models.with.TensorFlow.Lite.rar
Code:
https://rapidgator.net/file/701258fce1dbf561e65776492a581ff8/Coursera.-.Device-based.Models.with.TensorFlow.Lite.rar
Code:
https://turbobit.net/jy7p75dh34rc/Coursera.-.Device-based.Models.with.TensorFlow.Lite.rar.html