Welcome To Crax.Pro Forum!

Check our new Marketplace at Crax.Shop

   Login! SignUp Now!
  • We are in solidarity with our brothers and sisters in Palestine. Free Palestine. To learn more visit this Page

  • Crax.Pro domain has been taken down!

    Alternatives: Craxpro.io | Craxpro.com

free products

In mathematics, specifically group theory, the free product is an operation that takes two groups G and H and constructs a new group G ∗ H. The result contains both G and H as subgroups, is generated by the elements of these subgroups, and is the “universal” group having these properties, in the sense that any two homomorphisms from G and H into a group K factor uniquely through a homomorphism from G ∗ H to K. Unless one of the groups G and H is trivial, the free product is always infinite. The construction of a free product is similar in spirit to the construction of a free group (the universal group with a given set of generators).
The free product is the coproduct in the category of groups. That is, the free product plays the same role in group theory that disjoint union plays in set theory, or that the direct sum plays in module theory. Even if the groups are commutative, their free product is not, unless one of the two groups is the trivial group. Therefore, the free product is not the coproduct in the category of abelian groups.
The free product is important in algebraic topology because of van Kampen's theorem, which states that the fundamental group of the union of two path-connected topological spaces whose intersection is also path-connected is always an amalgamated free product of the fundamental groups of the spaces. In particular, the fundamental group of the wedge sum of two spaces (i.e. the space obtained by joining two spaces together at a single point) is, under certain conditions given in the Seifert van-Kampen theorem, the free product of the fundamental groups of the spaces.
Free products are also important in Bass–Serre theory, the study of groups acting by automorphisms on trees. Specifically, any group acting with finite vertex stabilizers on a tree may be constructed from finite groups using amalgamated free products and HNN extensions. Using the action of the modular group on a certain tessellation of the hyperbolic plane, it follows from this theory that the modular group is isomorphic to the free product of cyclic groups of orders 4 and 6 amalgamated over a cyclic group of order 2.

View More On Wikipedia.org
Top Bottom